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SUMMARY

We develop an extension of the Kaplan—Meier estimator for the case of multiple live states. The method can
be used to construct prognostic charts for tracking individuals initially in a given condition. It is also the
key component in constructing a longitudinal version of the multistate life table. © 1998 John Wiley
& Sons, Ltd.

1. INTRODUCTION

A basic task in survival analysis is the estimation of the survival curve from cohort data in the
presence of censoring. In the simplest case, with a single live state and a single absorbing state
(often death), the non-parametric maximum likelihood estimator is well known to be that of
Kaplan and Meier." Standard references include the books by Kalbfleisch and Prentice, Cox and
Oakes, and Collett.>*

The multistate case also arises frequently in medical applications, the live states being, for
instance, ‘healthy’ together with one or more ‘diseased’ states. There may also be more than one
absorbing (dead) state. In the biostatistical literature the case of multiple live states is often
referred to as multistate (reference 4, p. 275), while the single live state and multiple dead states
problem is frequently described as competing risks analysis.®> For example, Kalbfleisch and
Prentice? consider the times of first passage from one state to the others, and estimate the
distribution function of such times in the presence of censoring. There is also a literature on
multistate modelling in situations where the states are at least partly hierarchic.® For example,
Gray’ and Finkelstein and Schoenfeld® show how information on disease progression may be
used to obtain improved estimators of the survival function.

The problem considered here is the estimation of the probabilities [;;(x, #)] that an individual
in state i at time x will be in a specified state j at a subsequent time ¢. The problem may be viewed
as one of prognosis for an individual who currently has a given condition. Although versions
of the formulation given here have been considered previously, the extended Kaplan—Meier
estimator we develop appears to be new. We also describe, with examples, two commonly
occurring types of application where methodology could profitably be used.
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972 D. STRAUSS AND R. SHAVELLE

Multistate problems have been extensively studied in other disciplines, most notably demogra-
phy™'® and the social sciences.'** In contrast with the biostatistical approach, the main tradition
in demography has been to work with models and data based on short time intervals. In
particular, the period life table (reference 34, p. 11) is in many respects a cross-sectional
counterpart to (longitudinal) survival analysis. The demographic multistate life table, widely used
to model transitions among marital or job status, for example, is similarly period-based (reference
9, p. 354 and reference 18, p. 68). A fundamental problem with the multistate life table is its
dependence on a Markov assumption, since the history of an individual prior to the (very short)
period of study is not taken into account.”!®2435-3® A5 we shall see, one can use the estimator
introduced here to mitigate the problem.

A similarly period-based methodology was presented by Manton and Soldo,3® based upon
work by Koizumi,*® and was later popularized by Manton and Stallard (reference 41, p. 7) and
Manton and Singer.*? They considered a population with three live states (healthy, diseased, and
disabled) and a dead state, and estimated the age-specific expected proportions in the various live
states. Being entirely period-based (for example, they used a period life table rather than a cohort
analysis to estimate survival rates), their analysis could not take into account individuals’
previous history. As a result, it was not possible to distinguish cohorts on the basis of their state
membership at time of birth or at other times; prognosis was only possible for an undifferentiated
aggregate cohort. We illustrate how one can use the extended Kaplan-Meier estimator to
compare and contrast the prognoses of different cohorts. :

2. AN EXTENDED KAPLAN-MEIER ESTIMATOR
2.1. Preliminaries

We begin with the case of a single live state. Let t; <t, < ... represent the observed failure
(death) times in a sample from a homogeneous population. Suppose that d, individuals fail at time
t, and that m; are censored in the interval [, £, + ). Let s, = (my + dy) + (Mesy +disq) + ... be
the number at risk at time #,. The Kaplan-Meier estimate of the survivorship function at time ¢ is
(reference 2, p. 12)

Soy =11 (s"_d“>. o)

kit <t Sk

One estimator for the variance of the estimator is the Greenwood formula (reference 2, p. 14)

var[$©] = §*() ¥ <—d"—> @)

Kt <t k(s — di)

The estimator is appropriate under an assumption of uninformative or random censoring. One
version of this (reference 2, p. 121) is

Pr{Z()|C()} = Pr{Z()|C()} 3)

where Z(t) indicates the state (alive or dead) at time ¢, C(r) denotes the event that the individual is
censored (unobserved) at time ¢, and C(?) is the complementary event.

© 1998 John Wiley & Sons, Ltd. Statist. Med. 17, 971-982 (1998)
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For the multistate case, let i, j denote generic live states. Denote the absorbing (dead) state by 6.
Let Z(x) denote the individual’s state at time x. We have interest in the probabilities

Ty(x, 1) = Pr{Z(t) = j|Z(x) = i} @

together with 7;;, We need a slight generalization of (3). We define generalized uninformative
censoring by

Pr{Z()) =jIZ(x) =i, C()} = Pr{Z(1) =j|Z(x) = i, C(1)}. ©®)

It is easily seen that (5) and (2) are equivalent in the case of a single live state. We can interpret
equation (5) as saying that the censoring process is independent of which state the individual is in.

We also need the following notation. Let N; = N;(x) be the number of individuals in live state
i at time x, and let n;(x, t) be the number alive and uncensored at time z. Of these n;(x, t) persons,
let n;(x, t) be the number in state j at time t. Note that the arguments i, x and t are fixed
throughout Section 2; we will frequently suppress them in what follows. We use, for instance, the
notations N, n and n;, and refer to the left hand side of (4) as =;.

2.2. The estimator

It is convenient to begin with the case of no censoring. By conditioning on the event {Z(t) # ¢},
we can rewrite (4) as

n; = my(x, £) = Pr{Z(t) = I Z()) # 8, Z(X) = i} Pr{Z(t) # 6| Z(x) = i}. (6)

The maximum likelihood estimator (MLE) of =; is thus the product of the MLEs of the two terms
in the right hand side of (6). The former is just n;/n, since the {n;} are multinomial when
conditioned on n. The latter MLE is, in the uncensored case, the empirical survivorship function,
that is, the complement of the empirical distribution function of the survival times.

In the presence of censoring, the statistics n and n; now represent the numbers of uncensored
individuals alive and in state j, respectively. The MLE of Pr{Z(t) = j|Z(x) # 8, Z(x) = i} can be
shown to involve all possible realizations of the process {Z(t,): m=1, ..., r} with Z(x) =1,
Z(t) = j, where the t,, are the censoring times within the interval (x, t). In practice this will
generally be intractable. The simple estimator n;/n is still consistent, however. This is so because
n;/n is a consistent estimator of

Pr{Z(t) = jIZ(x) # 6, Z(x) = i, individual was not censored},

and by (5) this is equal to Pr{Z(t) =j|Z(x) # J, Z(x) = i}.

Further, under (ordinary) uninformative censoring the MLE of the second term on the right
hand side of (6) is the Kaplan—Meier estimator S(x, t). Hence the product of these two estimators
is consistent for the probability (6).

Thus, finally, we have the extended Kaplan—Meier estimator

7%, 1) Ji%ﬂx’ D). )

It is often convenient to display the results in what one might call a prognostic chart, as illustrated
in the next section.

© 1998 John Wiley & Sons, Ltd. Statist. Med. 17, 971982 (1998)
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Intuitively, equation (7) has a simple interpretation: firstly, one applies the usual Kaplan—Meier
estimator to deal with survival while taking account of censoring (provided censoring is uninfor-
mative), secondly, provided that the censoring is uninformative in the generalized sense (5), one
multiplies this by the fraction of alive and uncensored individuals who are in state j. In
demography, however, although there has been considerable attention to the estimation of the
transition probabilities 7 (references 7, 9, p. 356ff, 18, p. 67ff, 43, 44, p. 122123, 45), none of
the proposed solutions is equivalent to (7) and all suffer from either censoring problems or
inconsistency. ‘

If we consider multiple causes of death (that is, there is more than one absorbing state), a simple
way to proceed is as follows. First, we combine all the dead states and obtain an initial
Kaplan-Meier estimate S(f). Next, we use some form of competing risk analysis (or multiple
decrement life table; see Schoen (reference 18, chapter 2) to calculate probabilities of the different
dead states, conditional on the event that death has occurred. These conditional probabilities are
then multiplied by 1 — S(¢). In this way we can partition the ‘dead’ portion of the prognostic
charts according to cause of death.

2.3. Variance of the estimator

We derive the large-sample variance of the estimator (7) for use in the construction of confidence
intervals etc. We can estimate the covariances of the several #; similarly.

First, for each of the N individuals initially in state i at time x, let p, be the chance of being alive
and uncensored at time ¢. Thus n is a binomial random variable with parameters N, p,. Since we
assume that individuals are exchangeable, n; conditional on n is also a binomial variable with
parameters n and p;, say. We write r = n/n, suppressing the argument j for simplicity.

Using the standard result

var(r) = E{var(r|n)} + var{E(r|n)} (8)

we have
var(r) = E {&(ln—_pjz} + var(p). ()]

Since when N is large the coefficient of variation of n is small, we can apply the delta method*®
and write E(1/n) ~ 1/E(n). Using sample values as consistent estimators of the population
quantities, we have

mqﬁzra;”. (10)

As noted, one estimate of the variance of S is given by the Greenwood formula (2). Further, § and
r are uncorrelated (though are independent only asymptotically). This is most easily seen in the
case of no censoring, because then

~ n
S=5 (11)

© 1998 John Wiley & Sons, Ltd. Statist. Med. 17, 971-982 (1998)
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and

= PoDj (12)

while E(S) = po and E(r) = E{E(r|n)} = E{p;|n} = p;.
Use of the delta method on the product in (7) shows that, asymptotically

var #; ~ §? var (r) + {E(r)}* var ()
=MD arg) (13)

where we can use equation (2) as an estimate of var(S). We reiterate that the (fixed) arguments i,
j and x have been suppressed in this discussion.

3. APPLICATION 1: PROGNOSTIC CHARTS

We illustrate the construction of these charts with an example. Strauss et al.*” studied the
prognosis of 11,912 infants with severe developmental disabilities. These were all the children who
received medical or other services from the State of California for developmental disabilities
before their first birthdays. The study period was 1980-1993. Censoring was primarily type III, or
progressive (reference 48, p. 3). Mortality data were obtained from the California Department of
Health Services, while other data were obtained from the California Department of Develop-
mental Services.

Preliminary analysis and previous research*-? suggested that initially one should partition the
children into cohorts on the basis of two key variables. These were tube feeding (a dichotomy
according to whether the child required gastrostomy feeding), and a four-point mobility scale
(cannot lift head when lying on stomach/can lift head but not chest/can lift head and chest when
lying on stomach but has limited ability to roll/has full rolling ability). Further analysis suggested
the collapsing of the eight (= 2 x 4) groups into four cohorts as follows: '

Cohort A:  Tube fed and unable to lift head when lying on stomach; n = 553.
Cohort B:  Tube fed and lacking full rolling ability, but able to lift head; n = 296.
Cohort C:  Unabile to lift head, but not tube fed; n = 1849.

Cohort D: Al other children requiring services before first birthday; n = 9214,

Figure 1 shows the ordinary Kaplan—Meier survival curves for the four cohorts. (Note that
various technical complications arose here and elsewhere in the study because the evaluations
were approximately annual rather than continuous, and because the initial evaluations were
performed at different ages. We do not deal with these issues here, as they are not relevant to our
present topic.) As may be seen, cohort A — the most severely impaired — has much the worst
survival prospects, with a median residual survival time of only about three years.

A major focus of the study was on the prognosis for improvement in function. We used the
same four categories as before (plus the dead state) to classify children at any subsequent age. For

© 1998 John Wiley & Sons, Ltd. Statist. Med. 17, 971-982 (1998)
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Figure 1. Survival times subsequent to evaluation for four cohorts of children with developmental disability who are

evaluated before age 1. Five-year survival probabilities: cohort A, 43 per cent; cohort B, 62 per cent; cohort C, 77 per cent;

cohort D, 91 per cent. Median survival times: cohort A, 3-2 years; cohort B, 11-5 years; median survival times for cohorts
C and D exceed study period and cannot be computed

example, it is of interest to parents, paediatricians, and others to know the chances that a cohort
A child will, at a given subsequent age, be alive but still tube fed and unable to lift his head, or
alive and in an improved state.

Figure 2, for children initially in cohort A, was constructed using (7). Thus, the upper curve is
the ordinary Kaplan—Meier estimator from Figure 1, while the other curves were constructed by
partitioning the survival probability at each age in proportion to the numbers of live uncensored
children in each of the categories A, B, C and D. To clarify the use of the chart, we note by way of
examples that, by construction, at time 0 (that is, at time of first evaluation) 100 per cent of the
children were in the most debilitated state A (tube fed and unable to lift their heads). Two years
later, fewer than 60 per cent are expected to have survived. Almost half of these will still be in the
most debilitated state. Of those who do improve, however, the majority will be in the least
debilitated condition (D). Further, the chances of being in an improved condition appear to level
off after two years. (Actually, Figure 2 does not show that an individual’s chance of improvement
is nearly zero after two years, but rather that the number of such children who improve is
balanced by those who subsequently regress back to group A. We required a separate analysis to
verify that these numbers were, in this instance, both rather small.)

For comparison, Figure 3 gives the corresponding prognostic chart for cohort C children
(initially unable to lift their heads but not tube fed). As may be seen, the prognosis for
improvement is much better. Of course, one should not assume that the difference reflects an
adverse effect of tube feeding. Strauss et al.3® consider this issue in some detail.

© 1998 John Wiley & Sons, Ltd. Statist. Med. 17, 971-982 (1998)
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Figure 2. Probabilities of subsequent improvement and of remaining static for children initially in state A. Results apply
to a cohort not subject to censoring, so that all surviving members must be in one of the four groups A-D
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Figure 3. Probabilities of subsequent improvement, regression, or of remaining static for children initially in state B.
Results apply to a cohort not subject to censoring, so that all surviving members must be in one of the four groups A-D
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When longitudinal data are available, charts of the form of Figures 2 and 3 are useful in
numerous medical applications. Some further examples of the sets of live states are healthy/
diseased/disabled, smoker/non-smoker, and, for treated cancer patients, remission/relapse.

4. APPLICATION 2: THE LONGITUDINAL MULTISTATE LIFE TABLE

To explain this application we first need some comments on the multistate life table. The
multistate table is a generalization of the ordinary life table that models transitions over the
lifespan between several states. It was developed by demographers in the 1970s and
1980s.%:1%:16:18:54 When applicable, the method provides estimates of many useful quantities,
including the remaining life expectancies of an individual of a given age in a given state, classified
by the time expected to be spent in each live state, together with a variety of transition
probabilities.

Formally, the underlying model is a continuous time stochastic process that may or may not be
Markovian, with an absorbing (dead) state and several transient (live) states. The construction of
a multistate life table is not entirely straightforward and some additional assumptions and
technical issues arise. Useful recent accounts are given by Schoen (reference 18, Chapter 4) and
Keyfitz (reference 9, Chapter 12). To date, most published applications of the method have been in
demography and the social sciences, but there are many potential applications in the health field.
For example, a multistate analysis with two live states, smoker and non-smoker, would take
account of movement between these states. This approach would be preferable to the use of a pair
of separate period life tables for smokers and non-smokers because the latter implicitly and
unrealistically assumes no transfers. This point has perhaps been insufficiently appreciated in
applications.

The current methodology for the multistate table generally uses instantaneous transitions
rates, estimated from period-based occurrence/exposure data. Hence, only an individual’s current
state is taken into account; prior history is ignored. In the multistate setting, unlike the single state
case, this requires a Markovian assumption that the transition probabilities depend on the
individual’s past history only through his current state. As noted previously, the failure of this
assumption in practice has been well recognized, and this is perhaps the main obstacle to wider
use of the method (reference 8, p. 216).

Like the ordinary life table, the multistate methodology formally applies whether the table is
period-based or longitudinal (cohort-based). The latter, however, has the advantage of not relying
on the Markov assumption. For example, with longitudinal data one may estimate a matrix of
transition probabilities from age 0 to age 10 directly from cohort data. If only one-year period
data are available, however, one must compute ten one-year transition matrices (for ages 0 to 1,
1 to 2, and so on) and appeal to the Markov property to justify their multiplication.

Despite its advantages, the cohort approach has not been followed in published applications,
probably in part because there has been no suitable proposal of a suitable estimator for long-term
transition matrices in the presence of censoring. For example Schoen’s (reference 18, p. 77)
estimator is inconsistent in the presence of uninformative censoring.

Given longitudinal data over, say, a ten-year study period, one can obtain maximum likeli-
hood estimates of each transition probability m;;(x, t), for ¢ = x + 1, ... ,x + 10 by the extended
Kaplan—Meier estimator (7). From these, all the life expectancies and related quantities can
be derived (reference 9, Chapter 12). Technical note: we used what may be termed a semi-
longitudinal multistate table here. The key idea is that if the available data permits estimation of

© 1998 John Wiley & Sons, Ltd. Statist. Med. 17, 971-982 (1998)
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Figure 4. Comparison of remaining life expectancies for those currently in the bad state, under three different life table
models. See text for discussion

transition matrices over a ten-year span, say, then matrices of transition probabilities between
ages 0 and 30, for example, are computed multiplying the three matrices for transitions between
ages 0 and 10, 10 and 20, and 20 and 30. In this way reliance on the Markov assumption is
minimized, although not eliminated. Details are given in Shavelle,>* but are not relevant to our
purpose here.

We illustrate with an example based on the same data sources as in the previous section. Here,
we focus on a simple dichotomy of the four-point mobility skill variable: can/cannot lift head
when lying on stomach. We refer to the two states as ‘good’ and ‘bad’. It is of interest to determine
the remaining expected lifetime for a child currently in the bad state, and how much of it will be
lived in the two states.

The key inputs for constructing a longitudinal multistate life table are the matrices of transition
probabilities

{n0, t): i, j = good, bad, or dead}

for all ages 1. We estimated these using the extended Kaplan—Meier estimator, equation (7).
We then use standard multistate life table theory (reference 9, Chapter 12) to compute
various quantities, such as age- and state-specific remaining life expectancies in each of the live
states.

Figure 4 shows total remaining life expectations for person of various ages who are currently in
the bad state. The solid line is based on the above longitudinal model. For comparison, we show the
corresponding results based on the usual (period) multistate life table methodology. Although

© 1998 John Wiley & Sons, Ltd. Statist. Med. 17, 971-982 (1998)
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the two methods give comparable results after age 30, the longitudinal method reveals much
shorter life expectancies than the period method at earlier ages. This disparity reflects the failure
of the Markov assumption inherent in the latter, which seriously overestimates the chances of
improvement from the bad state. This occurs because the assumption ignores the ‘law of
cumulative inertia’2® — the instantaneous rate for leaving a state often diminishes with increasing
duration of stay. Also shown in Figure 4 are life expectancies based on a conventional period life
table for persons in the bad state. This would apply to a synthetic cohort of persons who never
improve to the good state. The life expectancies are therefore necessarily lower than those derived
from the other models.

5. CONCLUSION

We have shown how to extend the Kaplan-Meier estimator to the problem of tracking indi-
viduals through several live states. The prognostic chart described in Section 3 may have wide
applicability. The estimator also plays a key role in the construction of a longitudinal version of
the multistate life table.’® This methodology appears to have considerable promise in medical
applications.
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