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A LONG PERIOD MULTISTATE LIFE
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The multistate life table (MLT) has been widely used by demographers for the past twenty
years. However, the pivotal Markov condition upon which the entire methodology rests
is rarely satisfied in practice. We lessen reliance upon the assumption by computing
transition probabilities for longer periods of time than was previously practical. An
extended Kaplan—Meier estimator accomplishes this task, simultaneously addressing the
issue of censoring. This allows for the construction of a long period MLT. We provide an
illustrative example of a 10-year period MLT, with comparison to a 1-year period MLT.
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INTRODUCTION

The multistate life table (MLT) has been widely used by demographers
for the past twenty years. Keyfitz (1985) and Schoen (1988a) indicate a
wide range of applications, including marital status and labor force
changes. v
The entire MLT methodology is predicated upon the Markov
assumption: future transitions do not depend upon the past, given that
the current state is known (Keyfitz, 1985; Manton and Stallard, 1984;
Schoen, 1988a). This assumption, however, is nearly always violated in
real applications. Few biological systems (Beck and Pauker, 1983) or
any social processes (Hannan, 1984; Heckman and Singer, 1982; Singer
and Spilerman, 1974; Tuma and Hannan, 1984) obey the Markov
assumption; see also Courgeau and Lelievre (1992), Hoem and Jensen
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(1982), and Schoen (1988a). Keyfitz (1980) considers it to be the main
limitation to more widespread use of the MLT. Failure of the assump-
tion can lead to serious errors, such as biased transition probabilities
(“lumping on the diagonals,” Blumen et al., 1955; McGinnis, 1968) and
incorrect life expectancies (Ledent, 1980a).

A distinction needs. to be made between the use of transition rates
and transition probabilities. The former are instantaneous forces of
transition, even if computed from a period of one year or more. By
contrast, the latter are probabilities of being in a given state at the end
of a period, for any given original state. MLTs constructed from rates
or probabilities are often referred to as the “movement” and “transi-
tion” approaches, or option 1 and option 2, respectively (Ledent,
1978; 1980a,b; Rogers, 1975). Ledent and others (Ledent, 1980a,b;
Ledent and Rees, 1986) have noted that the latter ameliorates the
Markov problem: the longer the period the fewer times the Markov
assumption need be invoked.

The primary difficulty in the transition approach is how to-account
for withdrawal or loss of persons from the study population. The key
innovation here is to use an extended Kaplan—Meier estimator which
has recently become available (Strauss and Shavelle, 1998a). The estima-
tor addresses the issue of censoring while computing consistent estimates
of the multistate transition probabilities. This allows for the construc-
tion of a longer period MLT than has previously been practical.

In this paper we show how to implement this idea using event-
history (longitudinal micro) data.! The next section details the theory
of a long period multistate life table. Section 3 provides an illustrative
example for a 10-year period, with comparison to the analogous 1-year
period MLT. We close with a discussion of practical issues.

THEORY

The key to the construction of a long period MLT is estimation of
transition probabilities over an arbitrary length of time. We therefore

"The existence of large longitudinal data sets in recent years has led to the
development of event-history analysis — a rapidly growing subfield of demography (see,
e.g., Hannan, 1984; Hobcraft and Murphy, 1986; or Menken et al., 1981) — and a call for
new methods to maximize the information therein (Hannan, 1984; Heckman and Singer,
1982; Keyfitz, 1987; Manton and Stallard, 1988; Nour and Suchindran, 1985). It has
been postulated that the confluence of event-history analysis and multistate demography
could produce a formidable analytic tool (Hannan, 1984; Schoen, 1988b). The present
contribution is such a nexus, and might also aptly be termed a semi-longitudinal MLT.
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first describe the extended Kaplan—Meier (EKM) estimator which can
accomplish such. We then show how it may profitably be applied to
MLT methodology.

The Extended Kaplan—-Meier Estimator

Suppose that we have N-year event-history (longitudinal micro) data
on a cohort of individuals (of various ages). Let the state space be
{1,2,...,k, 6}, i.e., there are k transient (live) states and one absorbing
(dead) state. Let {Z(x) =} denote that the person is in state j at age x.
Let i and j be any two transient states, not necessarily distinct, and
define

mi(x,n) = Pr{Z(x +n) = i| Z(x) =j}, for0<n<N. (1)

Let
Si(x,n) | )

denote the usual Kaplan-Meier estimator of the probability of
surviving n (0 <n < N) additional years for those in state j at age x
(Collett, 1994; Kalbfleisch and Prentice, 1980; Kaplan and Meier,
1958; Lee, 1992). The Kaplan—Meier estimator gives an unbiased
estimate of the survival probability under the assumption of non-
informative censoring. :

Let Py(x + n,n) be the number of people in state i at age x +# who
were in state j at age x. The EKM estimator is given by

Pyi(x+n,n)
Z:‘:l P'](x + n, n)_

(%, n) = Si(x,n), for0<m<N. - (3)

For a detailed derivation and discussion see Strauss and Shavelle
(1998a).2 : ,

Equation (3) encompasses transitions from any live (transient) state
J at age x to any other live state i at age x+n. The remaining
possibility is to transfer to the dead state, 6. This probability may be
found by subtracting the sum of the aforementioned values from (1),

2 A comparison of the EKM estimator to the integrated survival curve (Manton and
Soldo, 1985) is also given by Strauss and Shavelle (1998a). The estimator has been used
in an application to prognosis for survival and improvement of children with
developmental disabilities (Strauss er al., 1997; Strauss and Shavelle, 1998c) and to
facilitate computation of life expectancy for persons who have suffered a traumatic brain
injury (Strauss and Shavelle, 1998b).
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which results in the usual estimator
fi(x,m) =1 — S‘j(x, n). ' 4)

We have thus established that multi-step transition probabilities
may be computed directly from longitudinal micro data in the presence
of censoring. The EKM estimator enables us to lessen reliance upon
the Markov assumption when constructing a multistate life table.
This follows because we may directly estimate any n-step (n< N)
transition matrix, and need not separately estimate n 1-step transition
matrices and use the Markov assumption (n — 1) times to justify their
multiplication.?

A Long Period MLT

Following Keyfitz’s (1985) notation, let /;;(x) be the probability that a
person is in state i at age x given that he was in state j at birth. Let I(x)
be the matrix whose (i, j)th element is /;(x). All life table functions may
be computed once the set of transition matrices from age 0, {I(x),
x=1,2,...} is known (Ledent, 1980a; Hoem and Jensen, 1982). As we
are not following a cohort from birth until all have died, we must link
together the estimated N-step transition matrices in order to completely
specify all possible transitions. We do so using the Markov assumption
atages N, 2N, ..., which we subsequently refer to as nodes.
Our procedure for constructing a long period MLT is as follows:

e Determine the longest length of time, N, for which reliable
transition probabilities may be estimated. In practice this entails
checking that the loss of persons to death and censoring does not
lead to sample sizes so small as to preclude estimation of the
longer-step transitions. The length of the observation period, N, is
allowed to be larger than the width of the age groups. Use of
smaller-width age groups, so as to avoid aggregation bias (Rogers,
*1995), will be possible if a large enough data set is available.

e For ages x < N compute }(x) empirically using (3) and (3), i.e.,

I(x) =#(0,x) forO0<x<N, . (5)

where z(0, x) is a matrix with (i, j)th element 7,(0, x).

3The context of multi-step transition matrices here implies that n is a positive integer.
The derivation of the estimator, however, was for n an arbitrary positive real number.
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e For ages x*> N, with x*=kN+m (x*,k,N,meN, 0 <m<N),
compute I(x*) by making only partial reliance upon the Markov
assumption as '

1(x*) = m(0, N) *n(N,N) x - - - x5([k — 1]N, N) * n(kN,m). (6)

For example, with N = 10, we let 1(15) = &(0, 10)x(10, 5).
e As in the usual multistate life table (Keyfitz, 1985), we compute
{T(x),x=0,N,2N,...} using

T(x) = /x 1) du, %

where #;(x) is the number of years live in state i by persons in state j
at age x. We also compute {e(x),x =0, N, 2N, ...} using

e(x) =TI, ®

where e;;(x) is the expected time to be spent in state i by persons in
state j at age x.

Note that estimation of transition probabilities for alternate dura-
tions via EKM (7;(x, n), 0 <n < N) allows for determination of single
year I(x) values between all nodes of the long period MLT. This leads
to more accurate results for T(x), and consequently e(x), than the
customary (linear or cubic) interpolation between nodes N years apart.

Values of e(x) at the nodes are clearly interpretable as a result of the
Markov assumption, and apply to a synthetic cohort followed forward
in time. The single year 1(x) values, together with Equations (7) and (8),
will yield e(x) values between the nodes. The latter may be regarded
as interpolates, as they do not correspond to any distinct synthetic
cohort.

EXAMPLE

The application here concerns the prognosis for children with severe
developmental disabilities. We now describe the data, document the
failure of the Markov assumption, sketch the construction of 10-year
and l-year period MLTs, and compare 10-year period and 1-year
period MLTs with respect to transition probabilities and remaining
life expectancies.
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The Data

Our data source is the Client Development Evaluation Report (here-
after, CDER; Department of Developmental Services, 1979), filled out
approximately annually for all people receiving money or services
from the State of California. The portion of the data base used here
consisted of 1,231,786 records for 175,637 people observed in the
period 1980-1994. The CDER data has been described elsewhere
(Eyman et al., 1993a,b; Strauss et al., 1996).

Each CDER is an extensive report, consisting of 100 diagnostic and
66 evaluative items. The variable of interest in the present study is a
nine-point mobility scale whose low end is “cannot lift head when
lying on stomach” and whose high end is “assumes and maintains
sitting position independently.” The above cited studies, and others,
have demonstrated that this variable is a key predictor of survival.
Here, we focus on a simple dichotomy of can/cannot lift head when
lying on stomach. The two states are henceforth referred to as the
good and bad states.

Typical questions to be asked are (1) what are the chances of
survival and the chances of improvement for a child of a given age
who currently cannot lift his head?, and (2) what is the life expectation
for such a child, and how much of it is expected to be lived in the more
debilitated state?

Failure of the Markov Assumption

Figure 1 shows the age-specific probabilities of improving (moving to
the good state) in the next year for clients currently in the bad state.
The graph shows two curves, one each for those whose state one year
previously was good or bad. The probability of improving is much
better for those who were in the good state one year earlier. In this
case the immediate past does indeed affect the chance of future
transition, contradicting the Markov assumption.

Figure 2 shows the age-specific probabilities of dying in the next
year for those currently in the bad state. Again, we see that the
transition probability varies depending upon the past history of the
individual. Analogous graphs for those currently in the good state,
and for other past histories (not limited to just the most previous state)
are not shown here. The implication from all the graphs is that the
Markov assumption is seriously violated. We now show the effect of
the violation on multi-step transition probapbilities.
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FIGURE 1 Probability of improving in the next year for persons currently in the bad

state, stratified by state of occupancy one year earlier. The large disparity between the
two curves is evidence that the Markov assumption fails.
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FIGURE 2 Probability of dying in the next year for persons currently in the bad state,
stratified by state of occupancy one year earlier. The large disparity between the two
curves is evidence that the Markov assumption fails. Note: the probability is higher for
those previously in the good state because their condition is worsening, whereas those
previosly in the bad state have at least stabilized.
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Construction of the 10-year and 1-year Period MLTs

Using the EKM estimator, we estimated m;(x,n) for initial (rounded
to the nearest year) ages4 x=1,10,20,...,80; lengths of time®
n=1,2,...,10; initial states j€ {bad, good}; and destination states
i € {bad, good, dead}. The empirically computed values were smoothed
to produce stable estimates of the transition probabilities.

Having estimated the 1- to 10-year transition matrices at each
node, we computed the matrices {I(x),x=1,2,3,...,90} using (5)
and (6), with no persons surviving past age 90. Next, {T(x),
x=1,10,20,...,80} was computed using (7), with a linear approxima-
tion between single-year 1(x) values. Lastly, the values of {e(x),
x=1,10,20,..., 80} were computed using (8).

In addition, a 1-year period MLT was constructed using the
transition approach from 1-year transition probabilities. The probabil-
ities were those estimated by the EKM estimator (for intermediate
I(x) values) for the 10-year period MLT. Values of 1(x), T(x), and e(x)
were computed using (5)-(8), but with nodes at single years of age. In
this 1-year period MLT the Markov assumption is invoked 88 times,
at ages 2,3,...,89; in the comparable 10-year period MLT above,
8 times, at ages 10,20, ..., 80.

Comparison to the Results of an MLT Obtained by Applying the
Transition Method to 1-year Intervals

Tables 1 and 2 show the 10-year and 1-year period MLTs, respec-
tively, for persons currently in the bad state. Columns 2-4 of each
table show how 100,000 persons in the synthetic cohort at age 1 would be

4

‘We hav§ chosen to begin our analysis at age 1, rather than at birth, for several
reasons. Firstly, precise measurement of the aforementioned variable is suspect at ages
much younger than one year; in fact, there is no uniform age at which even healthy
children may obtain full mobility skills. The assumption of “a cohort with no past” is
thus valid here. Secondly, for reasons not germane to the present discussion, we doubt
the assumption of non-informative censoring for those who leave the study population
before age 1. Lastly, many developmentally disabled children only enter the system after
age 3 months. Therefore, a full tracking from birth is not possible, and a later starting
age is required. )

3 Although measurement of the variable of interest is made only yearly (panel data),
the assumption that it is complete event-history data is sensible. Primarily, most children
are evaluated very near their birthdays, so that little extrapolation from intermediate
ages to integral ages is required. Additionally, clients are required by law to have an
evaluation should their medical condition significantly alter, and a dramatic change in
this variable would warrant such a reevaluation. Thus, if an observation at a particular
integral age is unavailable, one may rightfully impute the value from the most recent
prior CDER.
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. TABLE 1
Ten-year period MLT for persons currently in the bad state

Age #Bad #Good #Dead e e (bad) e (good)
1 100000 0 0 359 42 317
10 11440 51000 37560 21.1 9.0 12.1
20 4050 49170 46790 23.2 10.5 - 12.8
30 1790 46980 51230 26.6 12.6 14.0
40 1340 44120 54540 22.8 10.1 12.7
50 970 40250 58780 17.5 8.4 9.1
60 550 33560 65880 14.5 7.8 6.7
70 - 270 23130 76600 9.8 73 25
80 220 11900 87880 6.9 6.4 0.5

TABLE 2
One-year period MLT for persons currently in the bad state

Age #Bad #Good #Dead e e (bad) e (good)
1 100000 0 0 49 44 40.4
10 13065 59572 27361 34.8 8.1 26.6
20 4263 61433 34303 33.8 8.7 25.1
30 1781 60395 37823 29.9 9.5 20.4
40 1166 57824 41009 24.6 ‘9.9 14.7
50 915 53951 45132 17.5 1.5 10.0
60 747 46602 52650 11.9 6.8 5.1
70 545 35499 63955 6.7 48 2.0
80 251 21884 77864 1.5 1.3 0.2

distributed amongst the three states at subsequent ages. Columns 5-7
give the total remaining life expectancy broken down by time to be
spent in each state. The disparity between the two life expectancies is
large at the younger ages (over 14 years at age 10), and decreases with
age. As the 10-year period MLT relies less upon the questionable
Markov assumption, its results are to be preferred to those of the
l-year period MLT. '

Figure 3 compares MLT and EKM age-specific probabilities of
transition from the bad to the good state. The l-year transition
probabilities for the two MLTs are identical (by construction), and
thus are not shown. The 2- and 10-year transition probabilities for the
l-year period MLT were obtained by multiplying 1-year transition
matrices under the Markov condition. The 2- and 10-year EKM
transition probabilities were derived using the EKM estimator. The
EKM estimated values are based directly on the longitudinal data, and
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FIGURE 3 Comparison of MLT and EKM estimated 1-, 2-, and 10-year bad to good
transition probabilities. Solid line (—): 1-year transition estimator. Dotted line (---):
EKM estimator. The large difference between the two 10-year curves is due to the MLTs
reliance upon the Markov assumption.

thus may be taken as “truth.” This comparison of long-term estimated
MLT transition probabilities to the “true” values appears to be unique
to the literature.

We observe from Fig. 3 that the 2-year probabilities are similar for
the age range shown, but that the 10-year values are markedly
different up to about age 40. In fact, the probabilities are more than
twice as large (40%) for the 1-year period MLT at age 10 as compared
to the true (EKM) rate (20%). Because of the violation of the Markov
assumption in this application, the 1-year period MLT greatly over-
estimates the long-term (10-year) probability of improving.

Figure 4 is a similar graph for age-specific probabilities of transition
from the bad to the dead state. Again, the 2-year transition probabil-
ities are similar, and the 10-year rates noticeably different, especially at
the youngest ages. Because of the relation to the previous graph, we
see that here the 1-year period MLT systematically underestimates the
long-term probability of dying (and also of staying in the bad state).

We now compare expectancies, restricting out attention to total
remaining life expectancies. Figure 5 shows results based on three
different methods. The 1-year and 10-year period MLTs are as
described above. The “basic life table for bad only” refers to a (scalar)
life table constructed from mortality rates for those in the bad state
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FIGURE 4 Comparison of MLT and EKM estimated 1-, 2-, and 10-year bad to dead
transition probabilities. Solid line (—): 1-year transition estimator. Dotted line (- -):
EKM estimator. The difference between the curves is due to the MLTs reliance upon the
Markov assumption.
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FIGURE 5 Comparison of residual life expectancies for persons currently in the bad
state. Solid line (—): MLT based on 1-year transition estimator. Dotted line (---): MLT
based on 10-year EKM estimator. Dashed line (---): basic life table for bad state only.
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only. It gives life expectancies only for those currently in the bad state,
assuming they remain there until death, and thus provides a useful
lower bound.

The graph highlights several interesting items. First, the 1-year and
10-year period MLTs give very different answers up to about age 35,
with the difference entirely due to the former’s reliance upon the
Markov assumption. Second, the results are similar from about age 40
onward, roughly paralleling the similarity of curves of Figs. 3 and 4
past age 40. Third, at ages 10-20, the 10-year period MLT values are
much nearer to the “bad only” values than to those of the 1-year
period MLT, indicating that persons in the bad state at those ages are
much more likely to remain there until death than the 1-year period
MLT indicates. This corresponds to the results of Fig. 3 for the same
ages, where the long-term (10-year) chance to improve is actually
much lower than the 1-year period MLT predicts. Last, the graph
shows the danger in ignoring possible changes in state: the remaining
life expectancies for those currently in the bad state are significantly
different depending upon whether the possibility of improvement in
condition is modelled (either MLT) or not (“life table for bad only”).

DISCUSSION

In constructing an MLT, accurate estimation of transition probabil-
ities is an issue, especially from small sample sizes. This is a concern in
any practical application of demography, and in all empirical work.
The field of statistics has a vast literature on this. In general, if the
sample size is too small to profitably use the nonparametric Kaplan—
Meier estimator, one may use a parametric model to estimate the
survival function or the transition probabilities. This procedure is
common; see, for example, Blossfeld et al. (1989); Coleman (1964a,b;
1968; 1981); Espenshade (1987); Ginsberg (1971, 1972); Heckman and
Singer (1982); Hougaard (1984); Land et al. (1994); MacRae 1977);
Manton and Stallard (1980); Manton et al. (1986); McFarland (1970);
Singer and Spilerman (1974); or Spilerman (1972a,b).

As noted earlier, the major limitation of the MLT is its reliance
upon the Markov assumption. With a long period MLT, however,
multi-step transition probabilities computed using the EKM estimator
are essentially empirical up to the length of the observation period, N,
with no Markov assumption required. In regard to life expectancies,
however, use of the Markov condition at the nodes is essential in order
to use the multistate framework.



LONG PERIOD MULTISTATE LIFE TABLE 173

To completely bypass use of the Markov assumption it would be
necessary to consider the entire past history at each age; that is, to use
an event-history model (Hannan, 1984). Special cases include models
with duration dependence (Belanger, 1989; Wolf, 1988) and semi-
Markov processes (Ginsberg, 1971; 1979; Hennessey, 1980; Hoem,
1972; Kitsul and Philipov, 1982; Littman and Mode, 1977; Mode,
1976; 1982; Pyke 1961a,b). These are rarely used, however, as they
are impractical and require age-duration-specific rates (Courgeau and
Lelievre, 1992; Ginsberg, 1971; Schoen, 1988b).

If data is abundant, one could follow an age- and state-specific
cohort with a given past history until all have died, and then compute
(empirically) the transition probabilities and average time spent in the
various states. This is akin to a purely longitudinal MLT (Hoem and
Jensen, 1982; Willekens, 1987) with “birth” at age x — that is, all per-
sons are followed from birth until death and the state of occupancy at
each age noted. The results of such an endeavor, obtained many years
later, would be of only historical interest. It might be argued, then, that
even if full event-history data were available, use of the most recent N
years of data by a long period MLT would provide more timely and
appropriate results. Analogously, this is why the period life table is
preferred to the cohort version (World Health Organization, 1984).

In summary, a long period MLT provides all the useful derived
quantities of MLT methodology while ameliorating its main problem:
reliance upon the Markov assumption. The increasing availability of
longitudinal data sets should ensure many new applications.
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